261 research outputs found

    Shared genetic contribution of type 2 diabetes and cardiovascular disease: Implications for prognosis and treatment

    Get PDF
    Purpose of Review: The increased cardiovascular disease (CVD) risk in subjects with type 2 diabetes (T2D) is well established. This review collates the available evidence and assesses the shared genetic background between T2D and CVD: the causal contribution of common risk factors to T2D and CVD and how genetics can be used to improve drug development and clinical outcomes. Recent Findings: Large-scale genome-wide association studies (GWAS) of T2D and CVD support a shared genetic background but minimal individual locus overlap. Summary: Mendelian randomisation (MR) analyses show that T2D is causal for CVD, but GWAS of CVD, T2D and their common risk factors provided limited evidence for individual locus overlap. Distinct but functionally related pathways were enriched for CVD and T2D genetic associations reflecting the lack of locus overlap and providing some explanation for the variable associations of common risk factors with CVD and T2D from MR analyses

    FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study

    Get PDF
    Aims/hypothesis: By genome-wide association meta-analysis, 17 genetic loci associated with fasting serum insulin (FSI), a marker of systemic insulin resistance, have been identified. To define potential culprit genes in these loci, in a cross-sectional study we analysed white adipose tissue (WAT) expression of 120 genes in these loci in relation to systemic and adipose tissue variables, and functionally evaluated genes demonstrating genotype-specific expression in WAT (eQTLs). Methods: Abdominal subcutaneous adipose tissue biopsies were obtained from 114 women. Basal lipolytic activity was measured as glycerol release from adipose tissue explants. Adipocytes were isolated and insulin-stimulated incorporation of radiolabelled glucose into lipids was used to quantify adipocyte insulin sensitivity. Small interfering RNA-mediated knockout in human mesenchymal stem cells was used for functional evaluation of genes. Results: Adipose expression of 48 of the studied candidate genes associated significantly with FSI, whereas expression of 24, 17 and 2 genes, respectively, associated with adipocyte insulin sensitivity, lipolysis and/or WAT morphology (i.e. fat cell size relative to total body fat mass). Four genetic loci contained eQTLs. In one chromosome 4 locus (rs3822072), the FSI-increasing allele associated with lower FAM13A expression and FAM13A expression associated with a beneficial metabolic profile including decreased WAT lipolysis (regression coefficient, R = −0.50, p = 5.6 × 10−7). Knockdown of FAM13A increased lipolysis by ~1.5- fold and the expression of LIPE (encoding hormone-sensitive lipase, a rate-limiting enzyme in lipolysis). At the chromosome 7 locus (rs1167800), the FSI-increasing allele associated with lower POM121C expression. Consistent with an insulin-sensitising function, POM121C expression associated with systemic insulin sensitivity (R = −0.22, p = 2.0 × 10−2), adipocyte insulin sensitivity (R = 0.28, p = 3.4 × 10−3) and adipose hyperplasia (R = −0.29, p = 2.6 × 10−2). POM121C knockdown decreased expression of all adipocyte-specific markers by 25–50%, suggesting that POM121C is necessary for adipogenesis. Conclusions/interpretation: Gene expression and adipocyte functional studies support the notion that FAM13A and POM121C control adipocyte lipolysis and adipogenesis, respectively, and might thereby be involved in genetic control of systemic insulin sensitivity

    Effects of genetic loci associated with central obesity on adipocyte lipolysis

    Get PDF
    Objectives: Numerous genetic loci have been associated with measures of central fat accumulation, such as waist-to-hip ratio adjusted for body mass index (WHRadjBMI). However the mechanisms by which genetic variations influence obesity remain largely elusive. Lipolysis is a key process for regulation of lipid storage in adipocytes, thus is implicated in obesity and its metabolic complications. Here, genetic variants at 36 WHRadjBMI-associated loci were examined for their influence on abdominal subcutaneous adipocyte lipolysis. Subjects and Methods: Fasting subcutaneous adipose tissue biopsies were collected from 789 volunteers (587 women and 202 men, body mass index (BMI) range 17.7–62.3 kg/m2). We quantified subcutaneous adipocyte lipolysis, both spontaneous and stimulated by the catecholamine isoprenaline or a cyclic AMP analogue. DNA was extracted from peripheral blood mononuclear cells and genotyping of SNPs associated with WHRadjBMI conducted. The effects on adipocyte lipolysis measures were assessed for SNPs individually and combined in a SNP score. Results: The WHRadjBMI-associated loci CMIP, PLXND1, VEGFA and ZNRF3-KREMEN1 demonstrated nominal associations with spontaneous and/or stimulated lipolysis. Candidate genes in these loci have been reported to influence NFκB-signaling, fat cell size and Wnt signalling, all of which may influence lipolysis. Significance: This report provides evidence for specific WHRadjBMI-associated loci as candidates to modulate adipocyte lipolysis. Additionally, our data suggests that genetically increased central fat accumulation is unlikely to be a major cause of altered lipolysis in abdominal adipocytes

    Genome-wide association study of diabetogenic adipose morphology in the GENetics of Adipocyte Lipolysis (GENiAL) Cohort

    Get PDF
    An increased adipocyte size relative to the size of fat depots, also denoted hypertrophic adipose morphology, is a strong risk factor for the future development of insulin resistance and type 2 diabetes. The regulation of adipose morphology is poorly understood. We set out to identify genetic loci associated with adipose morphology and functionally evaluate candidate genes for impact on adipocyte development. We performed a genome-wide association study (GWAS) in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort comprising 948 participants who have undergone abdominal subcutaneous adipose biopsy with a determination of average adipose volume and morphology. The GWAS identified 31 genetic loci displaying suggestive association with adipose morphology. Functional evaluation of candidate genes by small interfering RNAs (siRNA)-mediated knockdown in adipose-derived precursor cells identified six genes controlling adipocyte renewal and differentiation, and thus of potential importance for adipose hypertrophy. In conclusion, genetic and functional studies implicate a regulatory role for ATL2, ARHGEF10, CYP1B1, TMEM200A, C17orf51, and L3MBTL3 in adipose morphology by their impact on adipogenesis

    MUC1 as a Putative Prognostic Marker for Prostate Cancer

    Get PDF
    MUC1 is expressed on the apical surface of glandular epithelium. With functions including protection, adhesion and signaling, MUC1 has been implicated in prostate cancer. There are many splice variants, the best characterized of which are MUC1/1 and MUC1/2 which are determined by a SNP (rs4072037, 3506G>A)

    The association between C-reactive protein, mood disorder, and cognitive function in UK Biobank

    Get PDF
    Background: Systemic inflammation has been linked with mood disorder and cognitive impairment. The extent of this relationship remains uncertain, with the effects of serum inflammatory biomarkers compared to genetic predisposition toward inflammation yet to be clearly established. Methods: We investigated the magnitude of associations between C-reactive protein (CRP) measures, lifetime history of bipolar disorder or major depression, and cognitive function (reaction time and visuospatial memory) in 84,268 UK Biobank participants. CRP was measured in serum and a polygenic risk score for CRP was calculated, based on a published genome-wide association study. Multiple regression models adjusted for sociodemographic and clinical confounders. Results: Increased serum CRP was significantly associated with mood disorder history (Kruskal–Wallis H = 196.06, p < 0.001, η2 = 0.002) but increased polygenic risk for CRP was not (F = 0.668, p = 0.648, η2 < 0.001). Compared to the lowest quintile, the highest serum CRP quintile was significantly associated with both negative and positive differences in cognitive performance (fully adjusted models: reaction time B = −0.030, 95% CI = −0.052, −0.008; visuospatial memory B = 0.066, 95% CI = 0.042, 0.089). More severe mood disorder categories were significantly associated with worse cognitive performance and this was not moderated by serum or genetic CRP level. Conclusions: In this large cohort study, we found that measured inflammation was associated with mood disorder history, but genetic predisposition to inflammation was not. The association between mood disorder and worse cognitive performance was very small and did not vary by CRP level. The inconsistent relationship between CRP measures and cognitive performance warrants further study

    Polygenic Risk for Schizophrenia, Brain Structure, and Environmental Risk in UK Biobank

    Get PDF
    Schizophrenia is a heritable neurodevelopmental disorder characterized by neuroanatomical changes in the brain but exactly how increased genetic burden for schizophrenia influences brain structure is unknown. Similarly, the impact of environmental risk factors for schizophrenia on brain structure is not fully understood. We investigated how genetic burden for schizophrenia (indexed by a polygenic risk score, PRS-SCZ) was associated with cortical thickness (CT), cortical surface area (SA), cortical volume (CV) and multiple subcortical structures within 18,147 White British ancestry participants from UK Biobank. We also explored whether environmental risk factors for schizophrenia (cannabis use, childhood trauma, low birth weight and Townsend social deprivation index) exacerbated the impact of PRS-SCZ on brain structure. We found that PRS-SCZ was significantly associated with lower CT in the frontal lobe, insula lobe, lateral orbitofrontal cortex, medial orbitofrontal cortex, posterior cingulate cortex and inferior frontal cortex, as well as reduced SA and CV in the supramarginal cortex and superior temporal cortex, but not with differences in subcortical volumes. When models included environmental risk factors as covariates, PRS-SCZ was only associated with lower SA/CV within the supramarginal cortex, superior temporal cortex and inferior frontal cortex. Moreover, no interactions were observed between PRS-SCZ and each of the environmental risk factors on brain structure. Overall, we identified brain structural correlates of PRS-SCZ predominantly within frontal and temporal regions. Some of these associations were independent of environmental risk factors, suggesting that they may represent biomarkers of genetic risk for schizophrenia

    Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank

    Get PDF
    Anhedonia is a core symptom of multiple psychiatric disorders and has been associated with alterations in brain structure. Genome-wide association studies suggest that anhedonia is heritable, with a polygenic architecture, but few studies have explored the association between genetic loading for anhedonia—indexed by polygenic risk scores for anhedonia (PRS-anhedonia)—and structural brain imaging phenotypes. Here, we investigated how anhedonia and PRS-anhedonia were associated with brain structure within the UK Biobank cohort. Brain measures (including total grey/white matter volumes, subcortical volumes, cortical thickness (CT) and white matter integrity) were analysed using linear mixed models in relation to anhedonia and PRS-anhedonia in 19,592 participants (9225 males; mean age = 62.6 years, SD = 7.44). We found that state anhedonia was significantly associated with reduced total grey matter volume (GMV); increased total white matter volume (WMV); smaller volumes in thalamus and nucleus accumbens; reduced CT within the paracentral cortex, the opercular part of inferior frontal gyrus, precentral cortex, insula and rostral anterior cingulate cortex; and poorer integrity of many white matter tracts. PRS-anhedonia was associated with reduced total GMV; increased total WMV; reduced white matter integrity; and reduced CT within the parahippocampal cortex, superior temporal gyrus and insula. Overall, both state anhedonia and PRS-anhedonia were associated with individual differences in multiple brain structures, including within reward-related circuits. These associations may represent vulnerability markers for psychopathology relevant to a range of psychiatric disorders

    Subjective and objective sleep and circadian parameters as predictors of depression-related outcomes: A machine learning approach in UK Biobank

    Get PDF
    Background: Sleep and circadian disruption are associated with depression onset and severity, but it is unclear which features (e.g., sleep duration, chronotype) are important and whether they can identify individuals showing poorer outcomes. Methods: Within a subset of the UK Biobank with actigraphy and mental health data (n = 64,353), penalised regression identified the most useful of 51 sleep/rest-activity predictors of depression-related outcomes; including case-control (Major Depression (MD) vs. controls; postnatal depression vs. controls) and within-case comparisons (severe vs. moderate MD; early vs. later onset, atypical vs. typical symptoms; comorbid anxiety; suicidality). Best models (of lasso, ridge, and elastic net) were selected based on Area Under the Curve (AUC). Results: For MD vs. controls (n(MD) = 24,229; n(control) = 40,124), lasso AUC was 0.68, 95 % confidence interval (CI) 0.67–0.69. Discrimination was reasonable for atypical vs. typical symptoms (n(atypical) = 958; n(typical) = 18,722; ridge: AUC 0.74, 95 % CI 0.71–0.77) but poor for remaining models (AUCs 0.59–0.67). Key predictors across most models included: difficulty getting up, insomnia symptoms, snoring, actigraphy-measured daytime inactivity and lower morning activity (~8 am). In a distinct subset (n = 310,718), the number of these factors shown was associated with all depression outcomes. Limitations: Analyses were cross-sectional and in middle-/older aged adults: comparison with longitudinal investigations and younger cohorts is necessary. Discussion: Sleep and circadian measures alone provided poor to moderate discrimination of depression outcomes, but several characteristics were identified that may be clinically useful. Future work should assess these features alongside broader sociodemographic, lifestyle and genetic features

    Genome-wide association study of adipocyte lipolysis in the GENetics of Adipocyte Lipolysis (GENiAL) cohort

    Get PDF
    Objectives: Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. Methods: Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. Results: One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. Conclusions: In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology
    corecore